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The Poisson-Boltzman equation for double-charged macromolecules (zwitterions)
is obtained from very basic assumptions. The final linearized equation is solved
for two cases of general interest: spherical and cylindrical symmetries.
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INTRODUCTION

The study of electrically charged systems is of enormous interest,
both theoretically and technologically speaking, because many collec-
tive phenomena, as well as energy storage methodologies, are based
on the behavior of highly charged particles. In spite of the important
development of theoretical approaches to describe point-like electrical
charges, there exists very scarce literature related to the fundamental
theory of charged macromolecules. Besides the fundamental rel-
evance of those systems, the practical applications of charged macro-
molecules, as the so-called Polyelectrolytes, demand a theoretical
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México. E-mail: castano@fata.unam.mx

International Journal of Polymeric Materials, 55:373–383, 2006

Copyright # Taylor & Francis Group, LLC

ISSN: 0091-4037 print=1563-5333 online

DOI: 10.1080/009140390968100

373

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
0
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



framework to explain some of the fascinating phenomena of those
materials [1–5].

Indeed, the term Polyelectrolyte (PEL) is employed for describing
polymer systems consisting of a macroion, that is macromolecule car-
rying covalently bound anionic or cationic groups, and low-molecular
counterions, securing electroneutrality. Examples of an anionic and
a cationic PEL and a polyampholyte (special case of polyelectrolyte
carrying both anionic and cationic groups covalently bound to the
macromolecule) are schematically represented in Figure 1. A macroion
(or polyion) is a highly charged structure. If the macroion, that is, a
macromolecule carrying the ionic sites, has charge Q ¼ Ze then, in
solution there exist Z counterions. Typically, the solvent also contains
a salt, so the total number of counterions is Z plus the number of
corresponding ions from the salt.

One class of PEL widely studied are those consisting of slender,
rod-like particles. For such systems, the idealized model is an infinite
cylinder of radius a and uniform linear charge density with counter-
ious and coions treated theoretically as point particles. This
approach, however, neglects several effects as the interaction
between macroions, the flexibility degrees of freedom of the

FIGURE 1 Examples of: (a) anionic polyelectrolyte, poly(acrilic acid);
(b) cationic, poly(ethylene imine); and (c) polyampholyte, poly(aminocarboxylic
acids).
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macroion, finite size effects, to name but a few of the limitations of
the available models.

The Poisson-Boltzmann (PB) equation is the main mathematical
tool for studying the behavior of ionic solutions [1–4]. Its main advan-
tages are its simplicity, which allows analytical solutions in simple
cases, and its surprisingly good agreement with experiments. In its
simple form, the linearized Poisson-Boltzmann (LPB) leads to the
Debye-Hückel expression, thus providing a simple description
of screening effects in terms of the Debye-Hückel screening length
[5–6]. The success of the PB approach is quite impressive in view of
the various strong approximations that are included in its derivation:
it is a mean field approach that totally neglects correlations and all
specific (non-electrostatic) interactions between the ions, including
the ionic size.

Nevertheless, despite the success of the PB approach in describing a
wide range of systems, it has been known for a long time to have some
limitations in several important cases: phase transition of electrolyte
solution, the adsorption of charged ions to highly charged surfaces,
and the attractive interactions that can be observed between equally
charged surfaces in the presence of multivalent counterions. Conse-
quently, there have been numerous attempts to improve on the stan-
dard PB equation [7–9].

It has been accepted that PB equation is of fundamental importance
for the theoretical study of low-molecular electrolytes as such as poly-
electrolytes. The PB equation is based on a mean field potential, as
mentioned. Actually, the PB theory is only quantitatively correct for
ion concentrations less than 10 mM. The validity of PB theory is in
question for large concentration of ions with the help of the LPB equa-
tion [5] (the linearization of the Boltzmann term can be avoided) and
the theory still remains a mean field approach.

The so-called zwitterionic polymers are important copolymers carry-
ing, on some of their monomeric units, small lateral chains where
cations and anions are covalently bonded. A zwitterion is a macromol-
ecule with both cationic and anionic sites [10–13] and in some cases
maintain the zwitterionic end group in the propagation [14], as in poly-
(4-Vinlypyridine) salts. The importance of zwitterions can be understood
by recalling that aminoacids are zwitterions at physiological pH con-
ditions. In addition to the theoretical interest of these polymers, there
exist important applications and very scarce theory has been developed
toward the understanding of the fundamental statistical mechanics of
these systems. Accordingly, the present article shall extend the stan-
dard approach for zwitterionic polymers, aiming to provide a general
theoretical framework for analyzing charged macromolecules.
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THE LINEARIZED POISSON-BOLTZMANN EQUATION
FOR ZWITTERIONS (LPBZ)

Begin from the Poisson equation

r2Wr ¼ �
4pq
ee0

ð1Þ

where Wr is the electrostatic potential, q is the charge distribution, e is
the bulk dielectric constant, and e0 is the medium dielectric constant.
If the distribution of the ionic sites around a central ionic site can be
described by the Boltzmann distribution, in terms of the bulk concen-
tration of ionic sites, there is a mean field approach of the charge
distribution as:

qr ¼
X

i

n0
i zie exp � zieWr

kT

� �
ð2Þ

with r the distance from the central ionic site and where the
summation includes all ionic species, zi is the valence of the ith
species, e is the elementary charge, n0

i is the corresponding bulk
concentration, k is the Boltzmann constant and T the temperature.
Figure 2 shows schematically the spatial arrangements of a typical
zwitterion (Poly-(4-vynilpyridine-sulpho propyl betaine)), P4VP-SPB,
where the cationic and anionic sites are shown. Figure 3 shows a
representation of zwitterionic polymer chains, where ionic sites,
randomly distributed, are shown.

FIGURE 2 The Poly(4-vynilpyridine-sulpho propyl betaine), P4VP-SPB.
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Consider a system with only one type of cationic and anionic sites,
such as P4VP-SPB. Thus the distribution of ionic sites is described,
from Equation 2, by

qr ¼ n
ð0Þ
þ zþe exp � zþeWr

kT

� �
þ nð0Þ� z�e exp � z�eWr

kT

� �
ð3Þ

where zþ and z� are the valences of the cationic and anionic species
respectively, and n

ð0Þ
þ and nð0Þ� are the corresponding bulk concentra-

tions.

qr ¼ nð0Þze exp � zeWr

kT

� �
� exp þ zeWr

kT

� �� �
ð4Þ

where, for the P4VP-SPB case, z ¼ zþ ¼ z� and nð0Þ ¼ n
ð0Þ
þ ¼ nð0Þ� was

taken. These exponentials were expanded up to the linear term in
Wr (this is correct for weakly interacting potentials).

qr ¼ nð0Þze 1� zeWr

kT
þðzeWr=ktÞ2

2!
� �� �

" #
� 1þ zeWr

kT
þðzeWr=kTÞ2

2!
þ �� �

" #( )

FIGURE 3 Representation of polymeric chains with ionic sites randomly dis-
tributed. The central ionic site � is shown.
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and, by retaining only the linear terms

qr ffi nð0Þze �2zeWr

kT

� �

qr ffi�2nð0Þz2e2 Wr

kT
ð5Þ

the Linearized Boltzmann Equation for Zwitterions (LBZ) was
obtained.

Assuming that the electrostatic potential Wr satisfies Eq. 1, Eq. 5
leads to

r2Wr ¼ �
4p �2nð0Þz2e2ðWr=kTÞ
� �

ee0

r2Wr ¼ k2
MWr ð6Þ

where kM ¼ ð8pz2e2nð0Þ=ee0kTÞ1=2 is a characteristic length scale of the
system. Notice that Eq. 6 is just a generalization of the Debye-Hückel
equation for zwitterions.

Solution of LPBZ Equation in Spherical Coordinates

The LPBZ equation in spherical coordinates is

1

r2

d

dr
r2 dWr

dr

� �
¼ k2

MWr ð7Þ

1

r2
r2 d2Wr

dr2
þ 2r

dWr

dr

� �
¼ k2

MWr

d2Wr

dr2
þ 2

r

dWr

dr
� k2

MWr ¼ 0 ð8Þ

by setting Wr ¼ uðrÞ=r, where u(r) is a function of r; Eq. 8 takes the
form

d2uðrÞ
dr2

� k2
M ¼ 0 ð9Þ

with solutions of the form

uðrÞ ¼ A expð�kMrÞ ð10Þ
A is an arbitrary constant.

Finally

Wr ¼
A expð�kMrÞ

r
ð11Þ
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Notice that Eq. 11 is the typical expression for the LPB equation for
polyelectrolytes, as has been reported in the literature [15].

The Debye-Hückel Parameter for Zwitterions in
Spherical Coordinates

If the exponential of Eq. 11 is expanded into

Wr ¼
A

r
1� kMrþ ð�kMrÞ2

2!
þ � � �

" #
ð12Þ

and by taking only the linear term

Wr ¼ A
1

r
� kM

� �
ð13Þ

Wr ¼ Wsite þWM ð14Þ

Here, Wsite ¼ A=r is the potential at a distance r from the ionic site
under consideration and WM ¼ �AkM can be regarded as an inter-
action parameter, controlled by kM. This is the equivalent to the
Debye-Hückel theory for polyelectrolytes.

Solution of LPBZ Equation in Cylindrical Coordinates

To express Eq. 6 in cylindrical coordinates, the idealized geometrical
model of coaxial cylinder can be used, Figure 4, with a dielectric region
inside. The inner cylinder of radius a and uniform linear charge den-
sity and the external cylinder of radius b and uniform linear charge
density of opposite signs (cationic and anionic sites are treated as point
particles) allow the neglect of the edge effects by taking the length of
chains to be practically infinite, as compared to the ions dimensions.

If the cylinder shells are considered as potential surfaces
and L >> q

W ¼ W q;uð Þ

1

q
@

@q
q
@W
@q

� �
þ 1

q2

@2W
@u2

¼ 0 ð15Þ

W ¼ RðrÞQðuÞ can be proposed

Q

q
@

@q
q
@R

@q

� �
þ R

q2

@2Q

@u2
¼ 0
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multiplying by (q2=RQ)

q
R

d

dq
q

dR

dq

� �
þ 1

Q

d2Q

du2
¼ 0

1

Q

d2Q

du2
¼ �n2

d2Q

du2
þ n2Q ¼ 0 ð16Þ

FIGURE 4 Idealized geometrical model of the system type coaxial cylinder.
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with solutions QðuÞ ¼ A sinðnuÞ þ B cosðnuÞ
q
R

d

dq
q

dR

dq

� �
¼ n2

q2 d2R

dq2
þ q

dR

dq
� n2 ¼ 0 ð17Þ

with solutions RðqÞ ¼ qn þ q�n

For n ¼ 0, Eq. 16 is

d2Q

du2
¼ 0

dQ

du
¼ B0

Q ¼ A0 þ B0u

If we want u to be single-valued, then B ¼ 0, and

QðuÞ ¼ A sinðnuÞ ð18Þ
Eq. 17 is, for n ¼ 0,

q
R

d

dq
q

dR

dq

� �
¼ 0

d

dq
q

dR

dq

� �
¼ 0

q
dR

dq
¼ D0

dR

dq
¼ D0

q

R ¼ C0 þD0 ln q ð19Þ
So, from Eqs. 18 and 19

Wðq;uÞ ¼
X

n

An sin nuð Þ Cnqn þDnq�nð Þ þD0 ln
q
q0

ð20Þ

where C0 ¼ � ln q0, and absorbs A0.
With boundary conditions

Wða;uÞ ¼ Va

Wðb;uÞ ¼ Vb
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For q ¼ a we have, from Eq. 20,

Wða;uÞ ¼
X

n

An sinðnuÞðCnan þDna�nÞ þD0 ln
a

q0

¼ Va

Cnan þDna�n ¼ 0 and D0 ln
a

q0

¼ Va

Dn ¼ �Cna2n

Wðq;uÞ ¼
X

n

An sinðnuÞCnðqn þ a2nq�nÞ þD0 ln
q
q0

Wðq;uÞ ¼
X

n

En sinðnuÞðqn þ a2nq�nÞ þD0 ln
q
q0

W;

ð21Þ

where En ¼ AnCn:
And for q ¼ b;

Wðb;uÞ ¼
X

n

En sinðnuÞðbn þ a2nb�nÞ þD0 ln
b

q0

¼ Vb

Wðb;uÞ ¼
X

n

En sinðnuÞðbn þ a2nb�nÞ þD0 ln
b

q0

Va

D0 lnða=q0Þ

� �
¼ Vb

Wðb;uÞ ¼
X

n

En sinðnuÞ b2n þ a2n

bn

� �
þ Va ln

b

a
¼ Vb ð22Þ

X
n

En sinðnuÞ b2n þ a2n

bn

� �
¼ Vb � Va ln

b

a

X
n

En sinðnuÞ b2n þ a2n

bn

� �
¼ V0

where V0 ¼ Vb � Va lnðb=aÞ,
Z

du sin ðn0uÞ
X

n

En sinðnuÞ b2n þ a2n

bn

� �
¼
Z

du sin ðn0uÞV0

X
n

En
b2n þ a2n

bn

� �
dðn;n0Þ ¼

Z
du sinðn0uÞV0

En0
b2n0 þ a2n0

bn0

� �
¼
Z

du sinðn0uÞV0
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En0 ¼
bn0

b2n0 þ a2n0

� �Z
du sinðn0uÞV0 ð23Þ

CONCLUDING REMARKS

The Poisson-Boltzmann theory was extended for zwitterions, by
assuming a rod-like structure of the corresponding molecular chains.
A generalization of the Debye-Hückel equation for zwitterions was
obtained, as well as the linearized Poisson-Boltzmann equation for
zwitterions.

Two relevant symmetries were considered for solving the equations
obtained. In spherical coordinates, interestingly, the solution of the
LBPZ leads to the Debye-Hückel expression, thus providing a simple
description of interaction effects in terms of the characteristic length
scale of the system, kM. In the case of cylindrical coordinates, an
explicit expression was obtained for the potential W as a function of u.
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